Archives de catégorie : Picture

Titan: Moon over Saturn

Like Earth’s moon, Saturn’s largest moon Titan is locked in synchronous rotation. This mosiac of images recorded by the Cassini spacecraft in May of 2012 show’s its anti-Saturn side, the side always facing away from the ringed gas giant. The only moon in the solar system with a dense atmosphere, Titan is the only solar system world besides Earth known to have standing bodies of liquid on its surface and an earthlike cycle of liquid rain and evaporation. Its high altitude layer of atmospheric haze is evident in the Cassini view of the 5,000 kilometer diameter moon over Saturn’s rings and cloud tops. Near center is the dark dune-filled region known as Shangri-La. The Cassini-delivered Huygens probe rests below and left of center, after the most distant landing for a spacecraft from Earth. via NASA https://ift.tt/2ksOcXU

Galaxies Away

This stunning group of galaxies is far, far away, about 450 million light-years from planet Earth and cataloged as galaxy cluster Abell S0740. Dominated by the cluster’s large central elliptical galaxy (ESO 325-G004), this reprocessed Hubble Space Telescope view takes in a remarkable assortment of galaxy shapes and sizes with only a few spiky foreground stars scattered through the field. The giant elliptical galaxy (right of center) spans over 100,000 light years and contains about 100 billion stars, comparable in size to our own spiral Milky Way galaxy. The Hubble data can reveal a wealth of detail in even these distant galaxies, including arms and dust lanes, star clusters, ring structures, and gravitational lensing arcs. via NASA https://ift.tt/2IKtSQj

The Gum Nebula Expanse

Named for a cosmic cloud hunter, Australian astronomer Colin Stanley Gum (1924-1960), The Gum Nebula is so large and close it is actually hard to see. In fact, we are only about 450 light-years from the front edge and 1,500 light-years from the back edge of this interstellar expanse of glowing hydrogen gas. Covered in this 40+ degree-wide monochrome mosaic of Hydrogen-alpha images, the faint emission region stands out against the background of Milky Way stars. The complex nebula is thought to be a supernova remnant over a million years old, sprawling across the Ship’s southern constellations Vela and Puppis. This spectacular wide field view also explores many objects embedded in The Gum Nebula, including the younger Vela supernova remnant. via NASA https://ift.tt/2J8zOBM

Spiral Galaxy NGC 4038 in Collision

This galaxy is having a bad millennium. In fact, the past 100 million years haven’t been so good, and probably the next billion or so will be quite tumultuous. Visible toward the lower right, NGC 4038 used to be a normal spiral galaxy, minding its own business, until NGC 4039, to its upper left, crashed into it. The evolving wreckage, known famously as the Antennae, is featured here. As gravity restructures each galaxy, clouds of gas slam into each other, bright blue knots of stars form, massive stars form and explode, and brown filaments of dust are strewn about. Eventually the two galaxies will converge into one larger spiral galaxy. Such collisions are not unusual, and even our own Milky Way Galaxy has undergone several in the past and is predicted to collide with our neighboring Andromeda Galaxy in a few billion years. The frames that compose this image were taken by the orbiting Hubble Space Telescope by professional astronomers to better understand galaxy collisions. These frames — and many other deep space images from Hubble — have since been made public, allowing interested amateurs to download and process them into, for example, this visually stunning composite. via NASA https://ift.tt/2xdXGj1

Craters and Shadows at the Lunar Terminator

Why does the right part of this image of the Moon stand out? Shadows. The terminator line — the line between light and dark — occurs in the featured image so that just over half the Moon’s face is illuminated by sunlight. The lunar surface appears different nearer the terminator because there the Sun is nearer the horizon and therefore causes shadows to become increasingly long. These shadows make it easier for us to discern structure, giving us depth cues so that the two-dimensional image, when dominated by shadows, appears almost three-dimensional. Therefore, as the Moon fades from light to dark, shadows not only tell us the high from the low, but become noticeable for increasingly shorter structures. For example, many craters appear near the terminator because their height makes them easier to discern there. The image was taken two weeks ago when the lunar phase was waning gibbous. The next full moon, a Moon without shadows, will occur one week from today. via NASA https://ift.tt/2IBQM8k

Jupiter Cloud Animation from Juno

How do Jupiter’s clouds move? To help find out, images taken with NASA’s Juno spacecraft during its last pass near Jupiter have been analyzed and digitally extrapolated into a time-lapse video. The eight-second time-lapse video, digitally extrapolated between two images taken only nine minutes apart, estimates how Jupiter’s clouds move over 29 hours. Abstractly, the result appears something like a psychedelic paisley dream. Scientifically, however, the computer animation shows that circular storms tend to swirl, while bands and zones appear to flow. This overall motion is not surprising and has been seen on time-lapse videos of Jupiter before, although never in this detail. The featured region spans about four times the area of Jupiter’s Great Red Spot. Results from Juno are showing, unexpectedly, that Jupiter’s weather phenomena can extend deep below its cloud tops. via NASA https://ift.tt/2GAdjka

Reflections of Venus and Moon

Posing near the western horizon, a brilliant evening star and slender young crescent shared reflections in a calm sea last Thursday after sunset. Recorded in this snapshot from the Atlantic beach at Santa Marinella near Rome, Italy, the lovely celestial conjunction of the two brightest beacons in the night sky could be enjoyed around the world. Seaside, light reflected by briefly horizontal surfaces of the gentle waves forms the shimmering columns across the water. Similar reflections by fluttering atmospheric ice crystals can create sometimes mysterious pillars of light. Of course, earthlight itself visibly illuminates the faint lunar night side. via NASA https://ift.tt/2kaAqsO

Milky Way vs Airglow Australis

Captured last week after sunset on a Chilean autumn night, an exceptional airglow floods this allsky view from Las Campanas Observatory. The airglow was so intense it diminished parts of the Milky Way as it arced horizon to horizon above the high Atacama desert. Originating at an altitude similar to aurorae, the luminous airglow is due to chemiluminescence, the production of light through chemical excitation. Commonly recorded in color by sensitive digital cameras, the airglow emission here is fiery in appearance. It is predominately from atmospheric oxygen atoms at extremely low densities and has often been present during southern hemisphere nights over the last few years. Like the Milky Way, on that dark night the strong airglow was very visible to the eye, but seen without color. Jupiter is brightest celestial beacon though, standing opposite the Sun and near the central bulge of the Milky Way rising above the eastern (top) horizon. The Large and Small Magellanic clouds both shine through the airglow to the lower left of the galactic plane, toward the southern horizon. via NASA https://ift.tt/2rL5eU4

Rotation of the Large Magellanic Cloud

This image is not blurry. It shows in clear detail that the largest satellite galaxy to our Milky Way, the Large Cloud of Magellan (LMC), rotates. First determined with Hubble, the rotation of the LMC is presented here with fine data from the Sun-orbiting Gaia satellite. Gaia measures the positions of stars so accurately that subsequent measurements can reveal slight proper motions of stars not previously detectable. The featured image shows, effectively, exaggerated star trails for millions of faint LMC stars. Inspection of the image also shows the center of the clockwise rotation: near the top of the LMC’s central bar. The LMC, prominent in southern skies, is a small spiral galaxy that has been distorted by encounters with the greater Milky Way Galaxy and the lesser Small Magellanic Cloud (SMC). via NASA https://ift.tt/2IFqgy2

Saturns Hyperion in Natural Color

What lies at the bottom of Hyperion’s strange craters? To help find out, the robot Cassini spacecraft now orbiting Saturn swooped past the sponge-textured moon in 2005 and 2010 and took images of unprecedented detail. A six-image mosaic from the 2005 pass, featured here in natural color, shows a remarkable world strewn with strange craters and an odd sponge-like surface. At the bottom of most craters lies some type of unknown dark reddish material. This material appears similar to that covering part of another of Saturn’s moons, Iapetus, and might sink into the ice moon as it better absorbs warming sunlight. Hyperion is about 250 kilometers across, rotates chaotically, and has a density so low that it likely houses a vast system of caverns inside. via NASA https://ift.tt/2wF19qf