Archives mensuelles : avril 2021

Pink and the Perigee Moon

On April 25 a nearly full moon rose just before sunset. Welcomed in a clear blue sky and framed by cherry blossoms, its familiar face was captured in this snapshot from Leith, Edinburgh, Scotland. Known to some as a Pink Moon, April’s full lunar phase occurred with the moon near perigee. That’s the closest point in its not-quite-circular orbit around planet Earth, making this Pink Moon one of the closest and brightest full moons of the year. If you missed it, don’t worry. Your next chance to see a full perigee moon will be on May 26. Known to some as a Flower Moon, May’s full moon will actually be closer to you than April’s by about 98 miles (158 kilometers), or about 0.04% the distance from the Earth to the Moon at perigee. via NASA https://ift.tt/3xBploX

Apollo 17: The Crescent Earth

Our fair planet sports a curved, sunlit crescent against the black backdrop of space in this stunning photograph. From the unfamiliar perspective, the Earth is small and, like a telescopic image of a distant planet, the entire horizon is completely within the field of view. Enjoyed by crews on board the International Space Station, only much closer views of the planet are possible from low Earth orbit. Orbiting the planet once every 90 minutes, a spectacle of clouds, oceans, and continents scrolls beneath them with the partial arc of the planet’s edge in the distance. But this digitally restored image presents a view so far only achieved by 24 humans, Apollo astronauts who traveled to the Moon and back again between 1968 and 1972. The original photograph, AS17-152-23420, was taken by the homeward bound crew of Apollo 17, on December 17, 1972. For now it’s the last picture of Earth from this planetary perspective taken by human hands. via NASA https://ift.tt/3e36g7e

North Star: Polaris and Surrounding Dust

Why is Polaris called the North Star? First, Polaris is the nearest bright star toward the north spin axis of the Earth. Therefore, as the Earth turns, stars appear to revolve around Polaris, but Polaris itself always stays in the same northerly direction — making it the North Star. Since no bright star is near the south spin axis of the Earth, there is currently no South Star. Thousands of years ago, Earth’s spin axis pointed in a slightly different direction so that Vega was the North Star. Although Polaris is not the brightest star on the sky, it is easily located because it is nearly aligned with two stars in the cup of the Big Dipper. Polaris is near the center of the eight-degree wide featured image, an image that has been digitally manipulated to suppress surrounding dim stars but accentuate the faint gas and dust of the Intergalactic Flux Nebula (IFN). The surface of Cepheid Polaris slowly pulsates, causing the star to change its brightness by a few percent over the course of a few days. via NASA https://ift.tt/3tZG4QI

Animation: Black Hole Star Shredder

What happens if a star gets too close to a black hole? The black hole can rip it apart — but how? It’s not the high gravitational attraction itself that’s the problem — it’s the difference in gravitational pull across the star that creates the destruction. In the featured animated video illustrating this disintegration, you first see a star approaching the black hole. Increasing in orbital speed, the star’s outer atmosphere is ripped away during closest approach. Much of the star’s atmosphere disperses into deep space, but some continues to orbit the black hole and forms an accretion disk. The animation then takes you into the accretion disk while looking toward the black hole. Including the strange visual effects of gravitational lensing, you can even see the far side of the disk. Finally, you look along one of the jets being expelled along the spin axis. Theoretical models indicate that these jets not only expel energetic gas, but create energetic neutrinos — one of which may have been seen recently on Earth. via NASA https://ift.tt/3tXelQr

A Sagittarius Triplet

These three bright nebulae are often featured on telescopic tours of the constellation Sagittarius and the crowded starfields of the central Milky Way. In fact, 18th century cosmic tourist Charles Messier cataloged two of them; M8, the large nebula below and right of center, and colorful M20 near the top of the frame. The third emission region includes NGC 6559, left of M8 and separated from the larger nebula by a dark dust lane. All three are stellar nurseries about five thousand light-years or so distant. Over a hundred light-years across the expansive M8 is also known as the Lagoon Nebula. M20’s popular moniker is the Trifid. Glowing hydrogen gas creates the dominant red color of the emission nebulae. But for striking contrast, blue hues in the Trifid are due to dust reflected starlight. The broad interstellarscape spans almost 4 degrees or 8 full moons on the sky. via NASA https://ift.tt/3eLgskj

Why isn’t this ant a big sphere? Planetary nebula Mz3 is being cast off by a star similar to our Sun that is, surely, round. Why then would the gas that is streaming away create an ant-shaped nebula that is distinctly not round? Clues might include the high 1000-kilometer per second speed of the expelled gas, the light-year long length of the structure, and the magnetism of the star featured here at the nebula’s center. One possible answer is that Mz3 is hiding a second, dimmer star that orbits close in to the bright star. A competing hypothesis holds that the central star’s own spin and magnetic field are channeling the gas. Since the central star appears to be so similar to our own Sun, astronomers hope that increased understanding of the history of this giant space ant can provide useful insight into the likely future of our own Sun and Earth. via NASA https://ift.tt/2QSuDeU

Streak and Plume from SpaceX Crew2 Launch

What’s happening in the sky? The pre-dawn sky first seemed relatively serene yesterday morning over Indian Harbor Beach in Florida, USA. But then it lit up with a rocket launch. Just to the north, NASA’s SpaceX Crew-2 Mission blasted into space aboard a powerful Falcon 9 rocket. The featured time-lapse video — compressing 12-minutes into 8-seconds — shows the bright launch plume starting on the far left. The rocket rises into an increasingly thin atmosphere, causing its plume to spread out just as it is lit by the rising Sun. As the Crew-2 capsule disappears over the horizon, the landing plume of the returning first stage of the Falcon 9 descending toward the SpaceX barge in the Atlantic Ocean can be seen. Up in space, the Endeavour crew capsule is expected to dock with the International Space Station (ISS) this morning, delivering four astronauts. The Crew-2 astronauts join Expedition 65 to help conduct, among other tasks, drug tests using tissue chips — small microfluidic chips that simulate human organs — that run rapidly in ISS’s microgravity. via NASA https://ift.tt/2QslV7k

Flying Over the Earth at Night II

Recorded during 2017, timelapse sequences from the International Space Station are compiled in this serene video of planet Earth at Night. Fans of low Earth orbit can start by enjoying the view as green and red aurora borealis slather up the sky. The night scene tracks from northwest to southeast across North America, toward the Gulf of Mexico and the Florida coast. A second sequence follows European city lights, crosses the Mediterranean Sea, and passes over a bright Nile river in northern Africa. Seen from the orbital outpost, erratic flashes of lightning appear in thunder storms below and stars rise above the planet’s curved horizon through a faint atmospheric airglow. Of course, from home you can always check out the vital signs of Planet Earth Now. via NASA https://ift.tt/3nf9ZBR

Planet Earth at Twilight

No sudden, sharp boundary marks the passage of day into night in this gorgeous view of ocean and clouds over our fair planet Earth. Instead, the shadow line or terminator is diffuse and shows the gradual transition to darkness we experience as twilight. With the Sun illuminating the scene from the right, the cloud tops reflect gently reddened sunlight filtered through the dusty troposphere, the lowest layer of the planet’s nurturing atmosphere. A clear high altitude layer, visible along the dayside’s upper edge, scatters blue sunlight and fades into the blackness of space. This picture was taken in June of 2001 from the International Space Station orbiting at an altitude of 211 nautical miles. But you can check out the vital signs of Planet Earth Now. via NASA https://ift.tt/3awVOmt